Age independently affects myelin integrity as detected by magnetization transfer magnetic resonance imaging in multiple sclerosis

نویسندگان

  • R.D. Newbould
  • R. Nicholas
  • C.L. Thomas
  • R. Quest
  • J.S.Z. Lee
  • L. Honeyfield
  • A. Colasanti
  • O. Malik
  • M. Mattoscio
  • P.M. Matthews
  • M.P. Sormani
  • A.D. Waldman
  • P.A. Muraro
چکیده

BACKGROUND Multiple sclerosis (MS) is a heterogeneous disorder with a progressive course that is difficult to predict on a case-by-case basis. Natural history studies of MS have demonstrated that age influences clinical progression independent of disease duration. OBJECTIVE To determine whether age would be associated with greater CNS injury as detected by magnetization transfer MRI. MATERIALS AND METHODS Forty MS patients were recruited from out-patient clinics into two groups stratified by age but with similar clinical disease duration as well as thirteen controls age-matched to the older MS group. Images were segmented by automated programs and blinded readers into normal appearing white matter (NAWM), normal appearing gray matter (NAGM), and white matter lesions (WMLs) and gray matter lesions (GMLs) in the MS groups. WML and GML were delineated on T2-weighted 3D fluid-attenuated inversion recovery (FLAIR) and T1 weighted MRI volumes. Mean magnetization transfer ratio (MTR), region volume, as well as MTR histogram skew and kurtosis were calculated for each region. RESULTS All MTR measures in NAGM and MTR histogram metrics in NAWM differed between MS subjects and controls, as expected and previously reported by several studies, but not between MS groups. However, MTR measures in the WML did significantly differ between the MS groups, in spite of no significant differences in lesion counts and volumes. CONCLUSIONS Despite matching for clinical disease duration and recording no significant WML volume difference, we demonstrated strong MTR differences in WMLs between younger and older MS patients. These data suggest that aging-related processes modify the tissue response to inflammatory injury and its clinical outcome correlates in MS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...

متن کامل

CLINICAL CORRELATIONS BETWEEN AUDITORY BRAIN STEM RESPONSE AND MAGNETIC RESONANCE IMAGING IN PATIENTS WITH DEFINITE MULTIPLE SCLEROSIS

In an attempt to assess objectively the integrity of the auditory pathways in 30 patients with definite multiple sclerosis (MS), an audiometric evaluation was performed and auditory brainstem responses (ABRs) were obtained. Stressing the auditory system by increasing the stimulation rate showed some enhancement in the identification of MS. 24 (RO%) patients had an abnormal ABR along with c...

متن کامل

Pathological Assessment of Brain White Matter in Relapsing-Remitting MS Patients using Quantitative Magnetization Transfer Imaging

Introduction: Multiple sclerosis (MS) is characterized by lesions in the white matter (WM) of the central nervous system. Magnetic resonance imaging is the most specific and sensitive method for diagnosis of multiple sclerosis. However, the ability of conventional MRI to show histopathologic heterogeneity of MS lesions is insufficient. Quantitative magnetization transfer imaging (qMTI) is a rel...

متن کامل

The Assessment of Structural Changes in MS Plaques and Normal Appearing White Matter Using Quantitative Magnetization Transfer Imaging (MTI)

Introduction: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS), affecting mostly young people at a mean age of 30 years. Magnetic resonance imaging (MRI) is one of the most specific and sensitive methods in diagnosing and detecting the evolution of multiple sclerosis disease. But it does not have the ability to differentiate between distinct histopathologic...

متن کامل

High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis.

Multiple sclerosis is an inflammatory, degenerative disease of the central nervous system. The most obvious pathological change in multiple sclerosis is multifocal demyelination of the white matter, but grey matter demyelination may be of equal or even greater importance for its clinical manifestations. In order to assess the pathogenetic role of lesions in the grey and white matter, and to exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014